

DFIT8 for Windows User's Manual

Differential Functioning of Items and Tests

T. C. Oshima, Steve Kushubar, John C. Scott, and Nambury S. Raju

System Requirements

Microsoft Windows 2000/XP/Vista 7 Mb free disk space 2 Mb free RAM

For Further Information

Assessment Systems Corporation 2233 University Avenue, Suite 200 St. Paul, Minnesota 55114, U.S.A. *Voice:* 651/647-9220 *Fax:* 651/647-0412 *E-Mail:* support@assess.com *World Wide Web page:* www.assess.com

User's Manual for DFIT8: Differential Functioning of Items and Tests First Edition, Windows Version (DFIT8.04)

Your DFIT8 License

Unless you have purchased multiple licenses for DFIT8, your license is a single-user license. You may install DFIT8 on up to two computers (e.g., a desktop and a laptop) so long as there is no possibility that the two copies will be used simultaneously.

Technical Assistance

If you need technical assistance using DFIT8, please visit the Support section of our Web site, <u>www.assess.com</u>. If the answer to your question is not posted, please email us at <u>support@assess.com</u>. Technical assistance for DFIT8 is provided for one year from the date you purchase your license. Please provide us with the invoice number for your license purchase when you request technical assistance.

Citation

Oshima, T. C., Kushubar, S., Scott, J.C. & Raju N.S. (2009). *DFIT8 for Window User's Manual: Differential functioning of items and tests*. St. Paul MN: Assessment Systems Corporation.

Contents

1 Introduction	1
Item Response Theory Models	1
Differential Functioning of Items and Tests	3
The DFIT Framework for DIF and DTF	4
Significance Tests in DFIT	6
References	7
2 Formatting Input Data for Analysis	8
Dichotomous IRT Calibration	8
Polytomous IRT Calibration	8
Linking	9
References	10
3 Definition File	11
Running DFIT	11
Dichotomous Run Definition File	11
Polytomous Graded Response Model Definition File	14
4 Output File	17
Viewing Output	17
Content of the Output File	17
Appendix A. Examples	18
1. A dichotomous example (Example 1)	
2. A polytomous example (Example 2)	25
Appendix B. Troubleshooting	33

Introduction

1

Nambury S. Raju (1937 – 2005) developed a framework for assessing the differential functioning of items and tests (DFIT) based on item response theory (IRT). In DFIT, differential item functioning (DIF) and differential test functioning (DTF) are assessed by using item and score parameter estimates obtained from an IRT calibration. The framework can be applied to test data that are either dichotomous (Raju, van der Linden, & Fleer, 1995) or polytomous (Flowers, Oshima, & Raju, 1999). Although both unidimensional and multidimensional DFIT models have been developed (Oshima, Raju, & Flowers, 1997), this program implements only the unidimensional models.

Item Response Theory Models

For dichotomously scored items, the three-parameter logistic model describes the probability of an individual answering item *i* correctly as a function of ability (θ) as follows.

$$P_i(\theta_s) = c_i + (1 - c_i) \frac{\exp\left[\operatorname{D}a_i(\theta_s - b_i)\right]}{1 + \exp\left[\operatorname{D}a_i(\theta_s - b_i)\right]}.$$
(1)

The item characteristics are represented by the a_i , b_i , and c_i parameters. The location parameter, b_i reflects the difficulty of the item. The discrimination parameter, a_i , relates to the steepness of the curve. The c_i parameter reflects the lower asymptote, or the probability that a person with extremely low θ would correctly answer the item. D is a scaling constant typically set at 1.702.

Polytomous IRT models require the estimation of multiple item response functions (IRF) representing the different response categories. Although various polytomous models have been developed in the IRT literature, the current version of DFIT8 uses Samejima's (1969) graded

response model (GRM) which is designed for ordered response categories. Theoretically, however, DFIT can be applied to different types of polytomous models.

According to GRM, for an item with *m* response categories, there will be *m*-1 boundary response functions (BRF). A BRF represents the probability of person *s* responding above response category *k* on item \underline{i} ,

$$P_{ik}^{*}(\theta_{s}) = \frac{\exp\left[\operatorname{D}a_{i}\left(\theta_{s}-b_{ik}\right)\right]}{1+\exp\left[\operatorname{D}a_{i}\left(\theta_{s}-b_{ik}\right)\right]},$$
(2)

where \underline{b}_{ik} is a location parameter that designates the boundary between response categories *k* and *k*+1, and \underline{a}_i is the item discrimination parameter.

The probability of responding in a particular response category can be computed from the difference between adjacent BRFs. This function is referred to as the category response function (CRF):

$$P_{ik}(\theta) = P_{i(k-1)}^{*}(\theta) - P_{ik}^{*}(\theta).$$
(3)

Because the first and last response categories lack an adjacent boundary, Samejima (1969) defined $P_{i0}^*(\theta) = 1$, and $P_{im}^*(\theta) = 0$. There will be as many CRFs for an item as there are response categories.

The expected score of individual *s* on item *i*, $ES_{si}(\theta_s)$, can be defined as a weighted average of the category values, where the weights reflect the probability of the individual selecting each category (i.e, the CRFs),

$$ES_{i}(\boldsymbol{\theta}_{s}) = \sum_{k=1}^{m} P_{ik}(\boldsymbol{\theta}_{s}) X_{ik} , \qquad (4)$$

where X_{ik} is the value assigned to category k on item i. For a dichotomously scored item, the expected score is equal to the probability of answering an item correctly (Equation 1).

The total score on a test can be defined as the sum of the scores on the individual items. This total test score can also be modeled as a function of θ and the resulting curve is called the test response function (TRF). The TRF is defined as sum of expected score functions across *n* items,

$$T(\boldsymbol{\theta}_s) = \sum_{i=1}^n ES_i(\boldsymbol{\theta}_s).$$
⁽⁵⁾

Differential Functioning of Items and Tests

The DFIT analysis starts with two sets of item parameter estimates (one from a reference group and another from a focal group) which are placed on the scale of the focal group along with the focal group's θ estimates. According to IRT, the item response functions (IRFs; also called item characteristic curves or item characteristic functions) are invariant over subgroups of examinees. Therefore, DIF is conceptualized by measuring the differences between the two IRFs .

Figure 1 graphically depicts the differences between a reference group IRF and a focal group IRF in the dichotomous model, by plotting probability (Y axis) against θ (X axis). The curve plotted is the IRF. According to IRT, the two curves should be invariant after the item parameter estimates from each group are placed on the common scale. Thus, any gap between the two IRFs indicates DIF. The gap can be measured in various ways. For example Raju (1988) developed a DIF index based on the area of the gap. In the DFIT framework, on the other hand, the gap is measured by the average squared distance of the probability difference at θ levels based on the focal group. This approach, compared to the area approach, offers substantial advantages as it can be easily expanded to different models (unidimensional or multidimensional models) in various scoring formats (dichotomous or polytomous data). The DFIT approach also makes several applications possible that are useful in DIF research (e.g., DTF, differential bundle functioning (Oshima, Raju, Flower, & Slinde, 1998)).

Figure 1. Two IRFs/ICFs

The DFIT Framework for DIF and DTF

The DFIT framework offers two types of DIF, non-compensatory DIF (NCDIF) and compensatory DIF (CDIF). NCDIF is defined as

$$NCDIF_{i} = E_{F} \left[d_{i} \left(\theta \right)^{2} \right], \tag{6}$$

where

$$d_i(\theta) = P_{iF}(\theta) - P_{iR}(\theta) \tag{7}$$

for the dichotomous model (see Figure 1), and

$$d_i(\theta) = ES_{iF}(\theta) - ES_{iR}(\theta)$$
(8)

for the polytomous model. E_F denotes the expectation taken over the θ distribution from the focal group.

DTF is similarly defined but at the test level. As shown in Figure 2, the two curves compared are the TRFs and the distance is defined as,

$$D(\theta) = T_F(\theta) - T_R(\theta) . \tag{9}$$

DTF is then defined as the expected value of the squared difference between focal and reference groups, where the expectation is taken across the θ distribution from the focal group,

Figure 2. Two TRFs/TCFs

$$DTF = E_F \left[D(\theta)^2 \right].$$
(10)

Despite the mathematical similarity between NCDIF and DTF, the relationship between the two is not straightforward as NCDIF does not take the item covariances into account. CDIF, on the other hand, has a straightforward relationship with DTF,

$$DTF = \sum_{i=1}^{n} CDIF_i .$$
(11)

CDIF is defined as

$$CDIF_i = E_F(d_i D) = Cov(d_i, D) + \mu_{d_i} \mu_D, \qquad (12)$$

where Cov stands for covariance.

NCDIF and CDIF both relate to DIF, but address different issues. Like most item-level DIF indices, NCDIF assumes that all items other than the studied item are DIF free, and can be used like any other DIF indices. CDIF, on the other hand, takes into account the pattern of DIF across items, and can be used to investigate the effect of removing the DIF items on DTF.

Significance Tests in DFIT

DFIT8 employs a recently developed significance test for NCDIF and DTF. The test is called the item parameter replication (IPR) method (Oshima, Raju & Nanda, 2006; Raju, Fortmann, Kim, Morris, Nering, & Oshima, in press) and provides a means of deriving cutoff values that are tailored to a particular data set. The IPR method begins with estimates of item parameters for the focal group and the sampling variances and covariances of these estimates. Based on these initial estimates, a large number of replications (typically 1,000 pairs) of item parameters are simulated. Then the cutoff value for each alpha level is determined by the empirical sampling distribution of NCDIF/DTF obtained under the null hypothesis that focal and reference groups have identical parameters. The IPR method produces cutoff values for each item.

The significance of CDIF is not tested directly. Instead, items with large CDIF are removed one by one until DTF reaches non-significance by a chi-square test. Those removed CDIF items are then considered significant.

References

More detailed information on DFIT can be found in the following references. Researchers new to DFIT might find the instructional module developed for the National Council on Measurement in Education (Oshima & Morris, 2008) useful.

Flowers, C. P., Oshima, T. C., & Raju, N. S. (1999). A description and demonstration of the polytomous-DFIT framework. *Applied Psychological Measurement*, *23*, 309-326.

Oshima, T. C., & Morris, S. B. (2008). An NCME Instructional Module on Raju's Differential Functioning of Items and Tests (DFIT). *Educational Measurement: Issues and Practice*, *27*, 43-50.

Oshima, T. C., Raju, N. S., & Flowers, C. P. (1997). Development and demonstration of multidimensional IRT-based internal measures of differential functioning of items and tests. *Journal of Educational Measurement, 34*, 253-272.

Oshima, T. C., Raju, N. S., Flowers, C. P., & Slinde, J. (1998). Differential bundle functioning (DBF) using the DFIT framework: Procedures for identifying possible sources of differential functioning. *Applied Measurement in Education*, *11*, 353-369.

Oshima, T. C., Raju, N. S., & Nanda (2006). A new method for assessing the statistical significance in the differential functioning of items and tests (DFIT) framework. *Journal of Educational Measurement*, *43*, 1-17.

Raju, N. S. (1988). The area between two item characteristic curves. Psychometrika, 53, 495-502.

Raju, N. S., K. A. Fortmann, Kim, W., Morris, S. B., Nering, M., & Oshima, T. C. (in press). The item parameter replication method for detecting differential functioning in the DFIT framework. *Applied Psychological Measurement*.

Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). An IRT-based internal measure of test bias with applications for differential item functioning. *Applied Psychological Measurement*, *19*, 353-368.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. *Psychometrika Monograph*, No. 17.

2

Formatting Input Data for Analysis

Dichotomous IRT Calibration

Any dichotomous IRT calibration program can be used to obtain item parameter estimates, their variance and covariance for each group (focal or reference). <u>BILOG-MG3</u> (Zimowski, Muraki, Mislevy, & Bock, 2002), for example, provides an estimated covariance file (*.cov) which contains item parameter estimates, error variances and covariances. The *.cov file needs to be rearranged to be readily read into DFIT8. The newly created file should contain the following information in the specific order for each item for the focal group: *b*, *a*, *c*, V(b), V(a), V(c), Cov(b,a), Cov(b,c) and Cov(a,c), where V is the variance and Cov is the covariance. BILOG-MG3 also provides the ability file (*.sco) which contains the θ estimates. DFIT depends on the accurate estimation of item parameters, and accurate parameter estimation typically requires large samples of examinees. Therefore, DFIT is not recommended for application with small samples. For dichotomous IRT models, the required sample size for each group will depend on the number of parameters estimated: Conservative sample sizes (*N*) are *N* > 200 for the one-parameter model, *N* > 500 for the two-parameter model, and *N* > 1,000 for the three-parameter model (Crocker & Algina, 1986).

Polytomous IRT Calibration

Any polytomous IRT calibration program can be used to obtain item parameter and variance estimates. The covariance information may not be readily available, however. For example, <u>PARSCALE</u> (Muraki & Bock, 2003) does not provide the covariance information. A Fortran program (<u>Polycov</u>; Morris 2007) is available to calculate the item variances and covariances from Parscale output and to create the input data file for DFIT8. It is not recommended to assume that the covariances are equal to 0. The input data file to DFIT8 has to provide focal group information in a specific order. Using a 5-category item as an example, it will be *a*, b_1 , b_2 , b_3 , b_4 , V(a), $V(b_1)$, $V(b_2)$, $V(b_3)$, $V(b_4)$, $Cov(a,b_1)$, $Cov(a,b_2)$, $Cov(a,b_3)$, $Cov(a,b_4)$, $Cov(b_1,b_2)$, $Cov(b_1,b_3)$, $Cov(b_1,b_4)$, $Cov(b_2,b_3)$, $Cov(b_2,b_4)$, and $Cov(b_3,b_4)$ in that order for each item for the focal group.

As with the dichotomous case, large sample sizes are required for polytomous DFIT. A sample size recommendation for accurate estimation for the polytomous models should be followed (e.g., N > 500 is recommended by Reise & Yu, 1990).

Linking

In the DFIT framework, the item parameter estimates from the reference group are placed on the scale of the focal group. Linking coefficients (a multiplicative coefficient and an additive coefficient) can be obtained by using linking programs such as <u>IPLINK</u> (Lee & Oshima, 1996) or <u>PIE</u> for dichotomous models, <u>IRTEQ</u> (Han, 2007) for either dichotomous or polytomous models, or <u>POLYEQUATE</u> for polytomous models. Iterative linking, or two-stage linking is recommended. Iterative linking is a process by which only items that are considered to be DIF-free are used as linking items. The steps for conducting two-stage linking are as follows:

- 1. Obtain linking coefficients using all items (the first stage),
- 2. Run DFIT to identify large DIF items,
- 3. Remove those large DIF items from the test,
- 4. Obtain revised linking coefficients (the second stage), and finally
- 5. Run DFIT for all items again using those revised linking coefficients.

References

Crocker, L. & Algina, J. (1986). *Introduction to classical and modern test theory*. New York: Holt, Rinehart & Winston.

Han, K. T. (2007). IRTEQ: Windows application that implements IRT scaling and equating[computer program]. Amherst, MA: University of Massachusetts Amherst, Center forEducational Assessment. Available for download at http://www.umass.edu/remp/software/irteq/

Lee, K., & Oshima, T. C. (1996). *IPLINK: Multidimensional and unidimensional item parameter linking in item response theory*. Applied Psychological Measurement, *20*, 230. Available for download at http://education.gsu.edu/eps/4493.html

Morris, B. S. (2008). *Polycov* [Computer program]. Chicago: Illinois Institute of Technology. Available for download at <u>http://www.iit.edu/~morris/polycov/polycov.html</u>

Muraki, E., & Bock, R. D. (2003). *PARSCALE 4: IRT Item Analysis and Test Scoring for Rating-Scale Data*. Scientific Software: Chicago, IL.

Reise, S. P. & Yu, J. (1990). Parameter recovery in the graded response model using MULTILOG. *Journal of Educational Measurement*, 27, 133-144.

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2002). *BILOG-MG3* [Computer software]. St.Paul, MN: Assessment Systems Corporation.

3 Definition File

Running DFIT

In order to perform a DFIT analysis, the user must create a DFIT run definition file (*.dft). The run definition file provides all the information necessary to read the necessary data files, perform the analysis and generate the output file.

Definition files are created by using the File \rightarrow New menu option.

The user can create the definition file by using the Normal View or Raw View (choices under the View pull-down menu). In the Normal View, the Windows frames assist the user to fill out the necessary information. In the Raw View, the user can type the syntax directly in text mode.

After the definition file is saved, the user can run the program by clicking Run in the pull-down menu.

Dichotomous Run Definition File

Here is a sample dichotomous run definition file:

Each line in the dichotomous run definition file is described below:

<u>Line 1</u>

Any title up to 80 characters long.

Line 2

The first number represents the number of items (I5 format – i.e., an integer field five characters wide). The maximum number of Items allowed is 100.

The second number represents the IRT model. This number should be 1, 2, or 3 (I5 format).

The third number represents the number of examinees or subjects in the focal group. The maximum number of examinees allowed is 5,000 (I5 format).

The fourth number is the number of replications for generating (using the IPR method) itemlevel and test/scale-level cut-off scores for assessing the significance of NCDIF and DTF indices (I5 format). The maximum is 99999.

The fifth number is the number for generating random item parameters in the Monte Carlo procedure and it MUST be a negative integer (I5 format). If the Windows interface is used to make the present file, the number for generating random item parameters is created by the program.

The sixth number is D (F8.4 format. i.e., a 8-character field with a decimal point and four significant digits after the decimal point), the IRT constant (see Equations 1 and 2). It must be set 1.0 if the IRT model is logistic or 1.7 if the IRT model is normal ogive.

The seventh and eighth numbers are the multiplicative and additive constants (F8.4 format for both). These are used for placing the reference group item parameters on the same metric as the focal group item parameters. In the case of the 1-parameter logistic or Rasch Model, the multiplicative constant must be set to 1.0. If the focal and reference group parameters are already on a common metric, the multiplicative and additive constants must be 1.0 and 0.0 respectively.

Line 3

A '1' tells the program to include the item in the DIF/DTF analysis. A '0' excludes the item from the analysis. For example, if there are 30 items in a test and you want to exclude Item 5 from the DIF/DTF analysis, then Line 3 should be as follows:

If you want to include all 30 items in the DIF/DTF analysis, Line 3 should read as follows:

Line 4

The format for reading the item parameters and the variance-covariance matrix as a vector [b, a, c, V(b), V(a), V(c), Cov(b,a), Cov(b,c) and Cov(a,c) in that order] for each item in the focal group. The specific format could vary from one application to the next. In the example above, 9F8.4 means nine fields of 8 characters each, including a decimal point and four significant digits after the decimal point. Formats must be enclosed in parentheses.

Line 5

The format for reading item parameters as a vector (b, a, and c in that order) for each item in the reference group. Information about the variances and covariances is not needed for the reference group. The specific item format could vary from one application to the next.

<u>Line 6</u>

The format for reading the θ values for the focal group. The specific θ format could vary from one application to the next. In the example above, 12x means skip the first 12 columns and begin reading in column 13.

<u>Line 7</u>

The file path to the focal group item data file. If no path is specified (i.e., just a file name, as in the above example), the program will look for the files in the same folder in which the program exists

<u>Line 8</u>

The file path to the reference group item data file.

Line 9

The file path to the θ values file.

Line 10

The file path to the output file.

Polytomous Graded Response Model Definition File

Here is a sample polytomous run definition file:

<u>Line 1</u>

Any title up to 80 characters long

Line 2

The first number represents the number of items (I5 format). The maximum number of items allowed is 100.

The second number represents the number of examinees or subjects in the focal group. The maximum number of examinees allowed is 5,000 (I5 format).

The third number is the number of replications for generating (via Monte Carlo procedures) item-level and test/scale-level cut-off scores for assessing the significance of NCDIF and DTF indices (I5 format).

The fourth number is the number for generating random item parameters in the Monte Carlo procedure and it MUST be a negative integer (I5 format). If the Windows interface is used to make the present file, the number for generating random item parameters is created by the program.

The fifth number is D (F8.4 format). It must be set to 1.0 if the IRT model is logistic or 1.7 if the IRT model is normal ogive.

The sixth and seventh numbers are the multiplicative and additive constants (F8.4 format for both). These are used for placing the reference group item parameters on the same scale as the focal group item parameters. In the case of one-parameter logistic or Rasch model, the multiplicative constant must be set to 1.0. If the focal and reference group parameters are already on a common metric, the multiplicative and additive constants must be 1.0 and 0.0, respectively.

Line 3

A '1' tells the program to include the item in the DIF/DTF analysis. A '0' excludes the item from the analysis. For example, if there 25 items in a test and you want to exclude Item 5 from the DIF/DTF analysis, then Line 3 should be as follows:

If all 25 items are to be included in the DIF/DTF analysis, Line 3 should read as follows:

Line 4

Each number represents the number of categories for a given item. The maximum number of categories allowed is 9. If you have a scale with 25 items with 5 categories per item, Line 4 should read:

Line 5

The format for reading item parameters and the variance-covariance matrix as a vector [For a 5category item, it will be $a, b_1, b_2, b_3, b_4, V(a), V(b_1), V(b_2), V(b_3), V(b_4), Cov(a,b_1), Cov(a,b_2),$ $Cov(a,b_3), Cov(a,b_4), Cov(b_1,b_2), Cov(b_1,b_3), Cov(b_1,b_4), Cov(b_2,b_3), Cov(b_2,b_4),$ and $Cov(b_3,b_4)$ in that order] for each item in the focal group. The specific format could vary from one application to the next.

Line 6

The format for reading item parameters and their variances as a vector [for an item with 5 categories: $a, b_1, b_2, b_3, b_4, V(a), V(b_1), V(b_2), V(b_3)$ and $V(b_4)$ in that order] for each item in the Reference Group. The specific format could vary from one application to the next.

Line 7

The format for reading the θ values for the focal group. The specific θ format could vary from one application to the next.

Line 8

The file path to the focal group item data file.

<u>Line 9</u>

The file path to the reference group item data file.

<u>Line 10</u>

The file path to the θ values file.

<u>Line 11</u>

The file path to the output file.

Line 12 and beyond: Each row indicates the initial score values associated with the categories for a given item. For example, if you have 25 items in a scale, you need 25 lines (Lines 12-36).

Output File

Viewing Output

The output file is created after a successful run of the definition file and presented on the screen. It can be also viewed later using File \longrightarrow Open in the program, or using any other programs that display text data.

Content of the Output File

Items 1 - 5 listed below are input information to verify that the input files are read into DFIT8 correctly. Items 6 - 10 present the results from the DFIT analysis. See Appendix A for examples.

- 1. Title
- 2. Input variables
- 3. Focal group item parameters
- 4. Reference group (unequated) item parameters
- 5. Reference group (equated) item parameters
- 6. Monte Carlo generated item-level and test-level cut-offs (from the IPR method). Cutoff values for alpha = .001, .005, .01, 05, .10, and .50 are provided. DTF cutoff values are listed at the bottom.
- Main output where CDIF, NCDIF, and NCDIF significance (*ns* indicates not significant) are reported. DIF category is for future use and it is blank.
- 8. Summary statistics for true scores
- 9. DTF related statistics, including the chi-square test
- 10. CDIF items to be removed to achieve non-significant DTF.

Appendix A. Examples

1. A dichotomous example (Example 1)

This is a 40-item simulated dichotomous test with 1,000 examinees in each group (reference and focal). DIF was embedded in Items 5, 10, 15, and 20. Items were calibrated separately for each group using BILOG-MG3 (2-parameter model). The item parameter estimates and their variance covariance estimates are listed in EX1R.PAR and EX1F.PAR for the reference group and focal group, respectively. In each file, there are five columns (*b*, *a*, V(*b*), V(*a*), and Cov(*b*,*a*) in that order). The linking coefficients were calculated using IPLINK (1.0240 and -0.0180 for the multiplicative and additive coefficients, respectively, after the second-stage linking). In the score file (EX1F.THT), the third column contains the θ estimates. For the IPR method, 1,000 replications were used to conduct the significance test.

General	Formats	Polytomous	Files
Run Type			
 Dichotomous 	C Polytomous		
Title for Run A DFIT exa	ample for 2-PL		
Number of Items 40			
Number of Participants in Fo	cal Group 1000		
Number of Replications	1000		
Value for D			
Ogive (1.702)	C Logistic (1.0)		
Constants			
Multiplicative Constant	1.0240		
Additive Constant	-0.0180		
Chaose IRT Medel			

Definition File in the Normal View

General For				ormats		Ľ		Polyton	ious	 Files		
Ente ther	er 1's : item	and O's and a '	sequen ''O'' mea	tially in I ans excl	he orde ude the	er of the item.	items.	A ''1'' r	neans i	include		
111	111	11111:	111111	111111	11111	11111	11111	1111				
	1	1	1		1					1.1		
iter	15	10	15	20	25	30	35	40	45	50		
51	55	60	65	70	75	80	85	90	95	100		
nat S nat o nat o mat o	pecifi f foca f refe f the	cations Il group rence g theta va	item pa roup ite alues foi	rameter m paran r the foc	s neters	9 3 p. 1	F8.4 F8.4 2× F8.4					

🔂 Run Definition: C:\DFIT8\E	X1.DFT	23
General	Formats Polytomous Fi	les
- Select Files		
Focal Group Item Data	C:\DFIT8\EX1F.PAR	
Reference Group Item Data	C:\DFIT8\EX1R.PAR	
Focal Group Theta Data	C:\DFIT8\EX1F.THT	
Output	C:\DFIT8\EX1.TXT	

Definition File in the Raw View

Run Definition: C:\DFIT8\EX1.DFT
A DFIT example for 2-PL 40 2 1000 1000 -290 1.7020 1.0240 -0.0180 1111111111111111111111111111111111

File: C:\DFIT8\EX1F.PAR									
1268	.4919	.0068	.0020	.0005					
0039	.5873	.0049	.0023	.0001					
-1.0306	.7138	.0072	.0037	.0032					
-1.1965	.6637	.0099	.0035	.0041					
.9457	.6880	.0070	.0032	0029					
1201	.7076	.0037	.0029	.0004					
- 0792	61.91	0045	0027	0001					

EX1F.PAR

EX1R.PAR

File: C:\DFIT8\EX1R.PAR									
1024	.5602	.0054	.0024	.0003					
1032	.5548	.0055	.0022	.0003					
-1.0420	.7205	.0074	.0036	.0033					
-1.1371	.7625	.0072	.0035	.0032					
0506	.7234	.0035	.0032	.0002					
0043	.6889	.0038	.0027	.0000					
- 0210	7166	0026	0029	0001					

EX1F.THT

🗊 File: C:\	DFIT8	EX1F.THT	
15	39	2.3506	.3860
15	18	4157	.1574
15	22	.3448	.2804
15	34	1.4551	.3068
15	12	4851	.1858
15	23	.4353	.0897
15	23	.4423	.0450
15	29	.4844	.1841
15	21	.4283	.1189
15	29	.5705	.3101
15	11	4836	.1823
15	37	1.9399	.4328
15	1	-2.4310	.4253
15	23	.4369	.0816
15	31	1.2512	.2587
15	25	4441	0252

EX1.TXT (Selected output)

- 1. Title
- 2. Input variables
- 3. Focal group item parameters

File: C:\DFIT8\EX1.TXT									
A DFIT example for 2-PL									
Number of Ite	ms:			40					
Number of Ite	m Parame	ters:		2					
Number of Sub	jects:			1000					
Number of Rep	lication	s:		1000					
Seed for Gene	rating R	andom Nu	mbers:	-290					
Logistic or N	ormal Og	ive (D):		1.7020					
Multiplicativ	e Consta	nt:		1.0240					
Additive Cons	tant:			-0.0180					
Focal Group i	tem para	meters							
Item b	а	V(b)	V(a)	C(b,a)					
	-								
1 -0.1268	0.4919	0.0068	0.0020	0.0005					
2 -0.0039	0.5873	0.0049	0.0023	0.0001					
3 -1.0306	0.7138	0.0072	0.0037	0.0032					
4 -1.1965	0.6637	0.0099	0.0035	0.0041					
5 0 9457	0 6880	0 0070	0 0032	-0.0029					
6 -0 1201	0 7076	0 0027	0.0029	0.0004					
7 -0 0792	0.6101	0.0045	0.0023	0.0004					

4. Reference group (unequated) item parameters

File: C:\	DFIT8\EX1.	тхт			
39 -0	.0923 1.	7879	0.0011	0.0165	0.0002
40 -0	.0735 1.	6198	0.0012	0.0133	0.0003
	-				
Referen	ce Group	(unequ	ated) if	tem para	neters
Item	ь	а			
1 -0	.1024 0.	5602			
2 -0	.1032 0.	5548			
3 -1	.0420 0.	7205			
4 -1	.1371 0.	7625			
5 -0	.0506 0.	7234			
6-0	.0043 0.	6889			
7 -0	.0210 0.	7166			
8 -0	.0220 0.	6824			
9 1	.0533 0.	7187			
10 0	.9525 0.	7552			
11 -1	8854 1	1500			

5. Reference group (equated) item parameters

🔁 File: C:\DFIT8\E	EX1.TXT	
38 1.0163	1.3233	
39 -0.0473	1.8970	
40 -0.0909	1.6128	
D		
Reference Gro	up (equated)	item parameters
Item b	a	
1 -0.1229	0.5471	
2 -0.1237	0.5418	
3 -1.0850	0.7036	
4 -1.1824	0.7446	
5 -0.0698	0.7064	
6 -0.0224	0.6728	
7 -0.0395	0.6998	
8 -0.0405	0.6664	
9 1.0606	0.7019	
10 0.9574	0.7375	

6. Monte Carlo generated item-level and test-level cut-offs (the IPR method)

```
File: C:\DFIT8\EX1.TXT
   37
     0.9638 1.4243
   38 1.0227 1.2923
   39 -0.0664 1.8525
   40 -0.1111 1.5750
Monte Carlo generated item-level and test-level cut-offs
 Item .001 Lvl .005 Lvl .01 Lvl .05 Lvl .10 Lvl .50 Lvl
                                                         Mean
                                                                    SD
    __ _____ _____ _____ _____ _____
                                                          ____
                                                                    _
    1 0.00557 0.00431 0.00333 0.00236 0.00184 0.00056 0.00081 0.00080
    2 0.00494 0.00426 0.00339 0.00208 0.00165 0.00051 0.00073 0.00074
    3 0.00486 0.00372 0.00329 0.00231 0.00181 0.00049 0.00076 0.00080
      0.00579 0.00442 0.00362 0.00226 0.00169 0.00051 0.00075 0.00080
    4
      0.00453 0.00380 0.00332 0.00228 0.00174 0.00048 0.00073 0.00077
    5
      0.00632
               0.00442 0.00350 0.00212 0.00172 0.00052 0.00074 0.00078
    6
       0.00572
                0.00438 0.00373 0.00229 0.00182 0.00057 0.00082 0.00080
    7
      0.00466 0.00395 0.00339 0.00224 0.00168 0.00050 0.00074 0.00074
    8
               0.00376 0.00328 0.00215 0.00160 0.00048 0.00071 0.00073
    9 0.00437
   10 0.00478 0.00419 0.00372 0.00209 0.00158 0.00039 0.00066 0.00076
         00604
                 0 00417 0 00264 0 00190 0 00124 0 00020 0 00054
                                                                 00075
```

7. Main output where CDIF, NCDIF, and NCDIF significance (*ns* indicates not-significant) are reported. DIF category is for future use and it is left blank.

5 File: C:\DFIT8\EX1.TXT									
4	0 0.003	360 0.	.00335 0.	.00296 0	.00182 0	.00135 0.	00043 0.000	62 0.0	00061
DT	F 0.169	970 0.	.12262 0.	.10372 0	.06955 0	.05664 0.	02080 0.026	92 0.0	02277
	Mean	SD	Mean	SD					DIF
Item	(d)	(d)	(1d1)	(1d1)	C(d,D)	CDIE	NCDIF	Sig.	Category
1	-0.001	0.016	0.015	0.006	-0.001	0.00012	0.00026	ns	
2	-0.023	0.014	0.024	0.013	0.001	0.01735	0.00073	ns	
3	-0.009	0.006	0.009	0.006	0.000	0.00615	0.00011	ns	
4	-0.013	0.013	0.017	0.006	0.002	0.01024	0.00033	ns	
5	-0.221	0.068	0.221	0.068	0.007	0.15813	0.05342	.001	
6	0.023	0.010	0.023	0.010	-0.001	-0.01635	0.00062	ns	
7	0.008	0.020	0.019	0.010	-0.001	-0.00668	0.00047	ns	
8	0.000	0.018	0.017	0.006	0.001	0.00116	0.00034	ns	
9	0.009	0.007	0.011	0.004	-0.001	-0.00760	0.00014	ns	
10	-0.099	0.062	0.099	0.062	-0.003	0.06447	0.01366	.001	
11	-0.004	0.024	0.016	0.018	0.004	0.00615	0.00058	ns	
12	0.010	0.011	0.010	0.011	0.001	-0.00651	0.00023	ns	
13	-0.033	0.033	0.033	0.033	0.000	0.02292	0.00221	.05	
14	-0.015	0.008	0.015	0.008	0.001	0.01102	0.00027	ns	
15	-0.264	0.131	0.264	0.131	0.021	0.20153	0.08693	.001	
16	0.015	0.014	0.015	0.014	0.000	-0.01030	0.00042	ns	
17	0.021	0.009	0.021	0.009	-0.002	-0.01648	0.00054	ns	
18	-0.007	0.006	0.007	0.005	0.001	0.00528	0.00007	ns	
19	0.042	0.017	0.042	0.017	-0.003	-0.03189	0.00203	ns	
20	-0.136	0.052	0.136	0.052	0.009	0.10246	0.02130	.001	
21	0.001	0.006	0.006	0.001	0.000	-0.00074	0.00003	ns	

8. Summary statistics for true scores

B- File: C:\DFIT8\EX1.TXT										
40 -0.012	0.010 0.012	0.010	0.002 0.	.00983 0	0.00023 ns					
	True-F	True-R	D	CDIF	1D1					
			-							
Mean	19.902	20.587	-0.68431	0.01275	0.68440					
Variance	88.438	87.705	0.04172	0.00195	0.04160					
Std. Dev.	9.404	9.365	0.20427	0.04411	0.20397					
Correlation	between focal &	referen	ce true sco	ores: (.99977					

9. DTF related statistics including the chi-square test

10. CDIF items to be removed to achieve non-significant DTF.

🗗 File: C	File: C:\DFIT8\EX1.TXT										
				-							
Mean	19.	902 20	.587 -	-0.68431	0.012	75 0.684	40				
Varian	ce 88.	438 87	.705	0.04172	0.001	95 0.041	60				
Std. D	ev. 9.	404 9	.365	0.20427	0.044	11 0.203	97				
Correlation between focal & reference true scores: 0.99977											
Differential test functioning (DTF): 0.51001											
	Square-root of DTF: 0.71415										
SD OF D**2: 0.25496											
Chi-square value: 12223.32											
Prob: 0.0000											
Degi	ees of freedom	101 011 5	quare.		·						
		Item	Delet:	ion Proce	dure A						
					DTF	Mean	Mean				
Run	Item removed	DTF	Si	g. Cat	egory	(D)	(1D1)				
1	None	0.51001	. 0	01		-0.68431	0.68440				
2	15	0.19391	. 0	01		-0.42094	0.42184				
3	5	0.04562	1	ns		-0.19983	0.20327				
4											

Results indicate that Items 5, 10, 15, and 20 show NCDIF at the .001 level. Item 13 shows NCDIF at the .05 level. The DTF of .51 is significant at the .001 level. After removing two significant CDIF items (Items 15 and 5), DTF is no longer significant.

2. A polytomous example (Example 2)

This is a 20-item simulated polytomous test (5-category responses scored 0, 1, 2, 3, 4) with 1,000 examinees in each group (reference and focal). DIF was embedded in Items 3, 8, 13, and 18. Items were calibrated separately for each group using PARSCALE (Muraki & Bock, 2003). The item parameter estimates and their variance covariance estimates are listed in EX2R.PAR and EX2F.PAR for the reference group and focal group, respectively. Those *.PAR files were created by POLYCOV which read the PARSCALE parameter files, added covariances, and arranged the information as required for DFIT input. In each file, there are 20 variables [a, b_1 , b_2 , b_3 , b_4 , V(a), $V(b_1)$, $V(b_2)$, $V(b_3)$, $V(b_4)$, $Cov(a,b_1)$, $Cov(a,b_2)$, $Cov(a,b_3)$, $Cov(a,b_4)$, $Cov(b_1,b_2)$, $Cov(b_1,b_3)$, $Cov(b_1,b_4)$, $Cov(b_2,b_3)$, $Cov(b_2,b_4)$, and $Cov(b_3,b_4)$ in that order]. The linking coefficients were calculated using EQUATE (1.0335 and 0.0492 for the multiplicative and additive coefficients, respectively, after the second-stage linking). In the score file (EX2F.SCO), the θ can be found at (/58x,F10.4). For the IPR method, 1000 replications were used to conduct the significance test.

V			
General	Formats	Polytomous	Files
Run Type			
C Dichotomous	Polytomous		
Fitle for Bun 🛛 🗛 polytomous			
A polytomous	example.		
Number of items 20			
Number of Participants in Focal	Group 1000		
Number of Replications	1000		
-Value for D	-		
O give (1.702)	 Logistic (1.0) 		
c			
- Constants Multiplicative Constant	1.0225		
indepiedence and and	1.0333		

Definition File in the Normal View

		Gene	eral		ľ	Fo	ormats		Ľ		Polyton	nous	ľ	Files
	Ente then	r 1's a item	and O's and a '	sequen "O" mea	tially in ans excl	the orde ude the	r of the item.	; items.	A ''1'' n	neans i	nclude			
	111	1111	111113	111113	1111						_			
	í	1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1	1			
	Item	. 5	10	15	20	25	30	35	40	45	50			
ļ	[
1	51	55	60	65	70	75	80	85	90	95	100			
nı	nat Sp mat of	becifi Foca	cations- il group	item pa	rameter	S	8	F10.5/8	3F10.5/	8F10.5				
orr	mat of	rerer	ence gi	roup ite	m paran	neters	8	F10.5/8	3F10.5/	8F10.5				
orr	mat of	the !	theta va	alues for	r the foo	al grour:	5. 7 ⁰	58x E10	14					

	General		Ĭ		Format	is	ſ		Poly	omous	:	Ľ	Files
Each	ı digit indic	ates the i	number of	categ	ories fo	or each	item.						
1555		,555555	5555										
Item	5 10) 15	20	25	30	35	40	45	50				
51 !	55 60	65	70	75	80	85	90	95	100				
5	01234 01234 01234		_	E	_			-	-				1
Ū	01234 01234 01234 01234 01234	25	4	5		65		85					
10	01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234	30	4 5	0		65 70		90					

General	Formats	Polytomous	Files
Select Files			
Focal Group Item Data	C:\DFIT8\EX2F.PAR		
Reference Group Item Data	C:\DFIT8\EX2R.PAR		
Focal Group Theta Data	C:\DFIT8\EX2F.SC0		
Output	C:\DFIT8\EX2.TXT		

Definition File in the Raw View

Run Definition: C:\DFIT8\EX2.DFT
A polytomous example. 20 1000 1000 -65 1.0000 1.0335 0.0492 1111111111111111 5555555555555555555

🗊 Run Definition:	C:\DFIT8	\EX2F.par	r			
0.55189 -1.77910	-0.69025	0.70902	1.85337	0.00128	0.01638	0.00683
0.00690 0.01742	0.00327	0.00124	-0.00127	-0.00341	0.00711	-0.00126
-0.00731 0.00159	-0.00134	0.00729				
0.69564 -2.37868	-1.16347	0.12672	1.50311	0.00147	0.01806	0.00643
0.00361 0.00884	0.00358	0.00167	-0.00020	-0.00226	0.00711	0.00069
-0.00490 0.00154	-0.00166	0.00214				
0.69400 -0.84214	0.37447	1.60908	2.74631	0.00155	0.00540	0.00384
0.00953 0.02529	0.00140	-0.00051	-0.00246	-0.00444	0.00135	-0.00120
-0.00325 0.00289	0.00300	0.01122				
0.65985 -1.95057	-0.63769	0.64576	2.03350	0.00140	0.01376	0.00482
0.00484 0.01479	0.00301	0.00096	-0.00097	-0.00316	0.00457	-0.00092
-0.00610 0.00126	-0.00101	0.00465				
0.64001 -1.35960	-0.11236	1.22009	2.54974	0.00140	0.00908	0.00414
0.00779 0.02360	0.00221	0.00020	-0.00191	-0.00418	0.00265	-0.00181

EX2R.PAR

🖏 Run Definition: C:	:\DFIT8\EX2R.	par			
0.50930 -1.88945 -0	0.5330	68 1.87103	0.00123	0.02054	0.00808
0.00716 0.02031 0	.00372 0.0014	40 -0.00103	-0.00369	0.00884	-0.00056
-0.00943 0.00242 -0).00182 0.007;	27			
0.68177 -2.52672 -1	.14592 0.139	90 1.41861	0.00145	0.02098	0.00657
0.00373 0.00855 0).00389 0.001(68 -0.00023	-0.00218	0.00749	0.00060
-0.00520 0.00159 -0).00152 0.0023	34			
0.64920 -2.09475 -0).69691 0.6913	39 2.01866	0.00139	0.01584	0.00515
0.00511 0.01499 0).00328 0.001(05 -0.00104	-0.00317	0.00511	-0.00133
-0.00681 0.00110 -0).00125 0.005(05			
0.67255 -2.00294 -0).66186 0.597	83 1.92057	0.00142	0.01392	0.00474
0.00455 0.01310 0).00304 0.000	97 -0.00088	-0.00293	0.00451	-0.00078
-0.00564 0.00125 -0).00091 0.0041	19			
0.66343 -1.36376 -0).07894 1.188	15 2.51284	0.00143	0.00857	0.00388
0.00712.0.02176.0	00215 0.000	15 0.00100	0 00000	0.00000	0.00100

EX2F.SCO

Pup	Definiti			V2E SCO		
Go Kun	Denniu	on: C:\	DEITO/E	AZF.3CU		
5	1	1 GF	(OUP 01	1.00		
1	1	1.00	1.80	1.00	-1.1592	0.2500
5		2 GF	:OUP 01	1.00		
1	1	1.00	1.75	1.00	-1.2274	0.2507
5		3 GF	:OUP 01	1.00		
1	1	1.00	3.35	1.00	0.5091	0.2462
5		4 GF	:OUP 01	1.00		
1	1	1.00	1.55	1.00	-1.6724	0.2597
5		5 GF	:OUP 01	1.00		
1	1	1.00	4.00	1.00	1.3623	0.2508
5	1	6 GF	:OUP 01	1.00		
1	1	1.00	2.60	1.00	-0.4071	0.2449
5	1	7 GF	:OUP 01	1.00		
1	1 1	1 00	2.05	1.00	1 0001	0.2500

EX2.TXT (Selected output)

- 1. Title
- 2. Input variables
- 3. Focal group item parameters

File: C:\DFIT8\EX2.TXT A polytomous example. Number of Items: 20 Number of Subjects: 1000 Number of Replications: 1000 Seed for Generating Random Numbers: -65 1.0000 Logistic or Normal Ogive (D): Multiplicative Constant: 1.0335 Additive Constant: 0.0492 ***** Focal group item parameters ***** Item parameters, followed by variances and then by covariences. For example, for a 3-category item, the order is: a, b1, b2, V(a), Item V(b1), V(b2), Cov(a,b1), Cov(a,b2), and Cov(b1,b2). 1 0.5519 -1.7791 -0.6902 0.7090 1.8534 0.0013 0.0164 0.0068 0.0069 0.0174 0.0033 0.0012 -0.0013 -0.0034 0.0071 -0.0013 -0.0073 0.0016 -0.0013 0.0073 2 0.6956 -2.3787 -1.1635 0.1267 1.5031 0.0015 0.0181 0.0064 0.0036 0.0088 0.0036 0.0017 -0.0002 -0.0023 0.0071 0.0007 -0.0049 0.0015 -0.0017 0.0021 3 0.6940 -0.8421 0.3745 1.6091 2.7463 0.0016 0.0054 0.0038 0.0095 0.0253 0.0014 -0.0005 -0.0025 -0.0044 0.0014 -0.0012 -0.0033 0.0029 0.0030 0.0112 4 0.6599 -1.9506 -0.6377 0.6458 2.0335 0.0014 0.0138 0.0048 0.0048 0 0148 0 0030 0 0010 -0 0010 -0.0032 0 0046 -0.0009 -0.0061 0 0012

4. Reference group (unequated) item parameters

```
File: C:\DFIT8\EX2.TXT
```

5. Reference group (equated) item parameters

```
File: C:\DFIT8\EX2.TXT
  18 1.1594 -1.8730 -0.6075 0.6581 1.9516
  19 1.2550 -1.3784 -0.0977 1.1367 2.3880
  20 1.6937 -1.8756 -0.6096 0.7032 1.9555
      *** Reference group (equated) item parameters ***
       Item parameters (For example, for a 3-category
 Item item, the order is: a, b1, AND b2).
        _____
                                 ____
   1 0.4928 -1.9035 -0.7030 0.6008 1.9829
   2 0.6597 -2.5622 -1.1351 0.1938 1.5153
   3 0.6282 -2.1157 -0.6711 0.7638 2.1355
   4 0.6507 -2.0208 -0.6348 0.6671 2.0341
   5 0.6419 -1.3602 -0.0324 1.2772 2.6462
      0 7232
             -3 4846 -2 0268
                            -0 4386
                                    1 1879
```

6. Monte Carlo generated item-level and test-level cut-offs (the IPR method)

```
File: C:\DFIT8\EX2.TXT
  18 1.1218 -1.8865 -0.5786 0.7294 2.0662
  19 1.2144 -1.3754 -0.0517 1.2240 2.5172
  20 1.6388 -1.8892 -0.5808 0.7760 2.0702
Monte Carlo generated item-level and test-level cut-offs
 Item .001 Lvl .005 Lvl .01 Lvl .05 Lvl .10 Lvl .50 Lvl
                                                               SD
                                                    Mean
  ____
                                                               ___
    1 0.02208 0.01778 0.01376 0.00911 0.00699 0.00215 0.00312 0.00314
    2 0.01452 0.01180 0.01048 0.00736 0.00566 0.00170 0.00243 0.00237
    3 0.01847 0.01425 0.01266 0.00835 0.00615 0.00163 0.00266 0.00290
    4 0.01755 0.01377 0.01235 0.00692 0.00535 0.00161 0.00237 0.00250
    5 0.01855 0.01377 0.01210 0.00765 0.00563 0.00177 0.00254 0.00259
       0 01766
               0 01093 0 01018 0 00643 0 00483 0 00140 0 00213 0 00226
```

7. Main output where CDIF, NCDIF, and NCDIF significance (*ns* indicates not-significant) are reported. DIF category is for future use and it is left blank.

File: C:\DFIT8\EX2.TXT											
20	0.007	22 0.	00571 0.	00515 0.	00330 0	.00251 0.0	0084 0.001	15 0.0	00110		
DTI	F 0.218	06 0.	18477 0.	16902 0.	12598 0.	.09857 0.0	3036 0.042	45 0.0	04007		
	Mean	SD	Mean	SD					DIF		
Item	(d)	(d)	(1d1)	(1d1)	C(d,D)	CDIF	NCDIF	Sig.	Category		
1	-0.014	0.040	0.035	0.024	-0.012	0.00036	0.00181	ns			
2	0.006	0.022	0.020	0.012	-0.007	-0.01266	0.00054	ns			
3	-0.499	0.048	0.499	0.048	-0.008	0.44618	0.25178	.001			
4	-0.004	0.007	0.006	0.005	-0.002	0.00164	0.00006	ns			
5	0.028	0.004	0.028	0.004	-0.001	-0.02663	0.00080	ns			
6	0.006	0.029	0.025	0.016	-0.009	-0.01446	0.00090	ns			
7	0.046	0.024	0.047	0.024	-0.007	-0.04972	0.00276	ns			
8	-0.378	0.181	0.383	0.171	0.056	0.39962	0.17609	.001			
	-0.004	0.041	0.035	0.022	-0.013	-0.00879	0.00169	ns			
10	-0.039	0.058	0.057	0.040	-0.018	0.01/10	0.00490	ns			
12	0.014	0.018	0.019	0.012	-0.005	-0.01812	0.00050	ns			
12	-0.229	0.043	0.046	0.030	0.013	0.26716	0.00302	001			
14	0.050	0.135	0.240	0.145	0.030	-0 01629	0.01124	.001			
15	-0.025	0 145	0 119	0.030	0.025	0.06740	0.02178	001			
16	0.020	0 010	0.023	0.009	0.040	-0.01812	0.00059	.001			
17	0 023	0 048	0 043	0 031	-0.015	-0 03592	0 00281				
18	0.010	0.076	0.063	0.045	0.024	0.01451	0.00592	ne			
19	0.007	0.024	0.022	0.012	0.007	0.00051	0.00063	ns			
20	0.047	0.010	0.047	0.010	-0.003	-0.04567	0.00234	ng			

8. Summary statistics for true scores

File: C:\DFIT8\EX2.TXT								
16	0.022	0.010	0.023	0.009	0.002 -0	.01812 (0.00059	ns
17	0.023	0.048	0.043	0.031	-0.015 -0	.03592 (0.00281	ns
18	0.010	0.076	0.063	0.045	0.024 0	.01451 (0.00592	ns
19	0.007	0.024	0.022	0.012	0.007 0	.00051 (0.00063	ns
20	0.047	0.010	0.047	0.010	-0.003 -0	.04567 (0.00234	ns
		True-F		True-R	D -	CDIF	1D1	
Mean Variance Std Dev		38 120).522).708	39.431 127.663	-0.90892 0.09744	0.04618 0.02012	0.90892 0.09744	
Correlation between focal & reference true scores: 1.00000								

- 9. DTF related statistics including the chi-square test
- 10. CDF items to be removed to achieve non-significant DTF.

```
File: C:\DFIT8\EX2.TXT
                 _____
                         _____
                                       -
                                            _____
                                                       ____
               38.522 39.431 -0.90892 0.04618 0.90892
Mean
               120.708 127.663 0.09744 0.02012 0.09744
Variance
                10.987 11.299 0.31216 0.14185 0.31216
Std. Dev.
Correlation between focal & reference true scores:
                                                1.00000
Differential test functioning (DTF): 0.92359
               Square-root of DTF: 0.96103
                      SD OF D**2: 0.57450
                 Chi-square value: 9478.26
                            Prob:
                                  0.0000
  Degrees of freedom for chi-square:
                                     999
                       Item Deletion Procedure A
                                        DTF
                                                  Mean
                                                          Mean
                        DTF Sig. Category
       Item removed
                                                          (1D1)
Run
                                                  (D)
        _____
                        ____
                              ____
                                     _____
                                                -----
                              .001
          None
                     0.92359
                                              -0.90892 0.90892
 1
                               .001
 2
             3
                     0.28300
                                               -0.40944 0.43305
                     0.03145
                                               -0.03106 0.12802
 3
             8
                                ns
```

Results indicate that Items 3, 8, 13, and 15 show NCDIF at the .001 level. Item 14 shows NCDIF at the .01 level. The DTF of .92 is significant at the .001 level. After removing two significant CDIF items (Items 3 and 8), DTF is no longer significant.

Appendix B. Troubleshooting

Most problems that occur when running DFIT are a result of incorrect or poorly formatted data. If you open the file in Normal View, when you start the run DFIT will perform validation of the definition file.

The most likely error is an end of file error. The figure below shows a typical end of file error.

This can be caused by several different errors in the data files:

- 1. Insufficient data in the data file
- 2. Incorrect format specification in the run definition file
- 3. Incorrect number of items or examinees specified on line 2 of the run definition file